Proposed model for the flagellar rotary motor with shear stress transmission
نویسندگان
چکیده
Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The motor consists of the rotor and the stator. The stator consists of about 8 MotA-Mot B complex. There seems to be no definite information about the structure between the rotor and the stator, and it is examined whether the experimental data can be explained based upon the following assumptions. (a) There is viscoelastic medium between the rotor and the stator. (b) MotA-MotB complex has an electric dipole moment and produces shear stress in the electric field by a proton in the channel. Calculation results based upon these assumptions are in good agreement with the following experimental observations. (1) One revolution of the flagellar rotation consists of a constant number of steps. (2) The rotation velocity of the rotor is proportional to the trans-membrane potential difference. (3) When the rotational velocity of a flagellum is changed by adjusting the viscosity of the outer fluid, the torque for the cell to rotate a flagellum is practically constant but sharply decreases when the rotational velocity increases over a critical value. (4) The rotation direction remains the same when the sign of the electrochemical potential gradient is reversed. (5) The cell produces constant torque to rotate the flagellum even when the cell is rotated by externally applied torque. (6) A simple switch mechanism is proposed for chemotaxis.
منابع مشابه
Shear Stress Transmission Model for the Flagellar Rotary Motor
Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a ...
متن کاملControl of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti.
Swimming cells of Sinorhizobium meliloti are driven by flagella that rotate only clockwise. They can modulate rotary speed (achieve chemokinesis) and reorient the swimming path by slowing flagellar rotation. The flagellar motor is energized by proton motive force, and torque is generated by electrostatic interactions at the rotor/stator (FliG/MotA-MotB) interface. Like the Escherichia coli flag...
متن کاملProtein turbines. I: The bacterial flagellar motor.
The bacterial flagellar motor is driven by a flux of ions between the cytoplasm and the periplasmic lumen. Here we show how an electrostatic mechanism can convert this ion flux into a rotary torque. We demonstrate that, with reasonable parameters, the model can reproduce many of the experimental measurements.
متن کاملRotary protein motors.
Three protein motors have been unambiguously identified as rotary engines: the bacterial flagellar motor and the two motors that constitute ATP synthase (F(0)F(1) ATPase). Of these, the bacterial flagellar motor and F(0) motors derive their energy from a transmembrane ion-motive force, whereas the F(1) motor is driven by ATP hydrolysis. Here, we review the current understanding of how these pro...
متن کاملImproved Rheological Model of Oil-Based Drilling Fluid for South-western Iranian Oilfields
In this study, predictive capabilities of apparent viscosity of oil-based drilling fluids which is used in National Iranian South Oilfields Company (NISOC) were evaluated using Newtonian and non-Newtonian models to drive a new suitable equation. The non-Newtonian models include Bingham plastic, Power law, Herschel-Bulkley, Casson, and Robertson-Stiff. To validate the results, the calculated vis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012